Atomistic modeling of nanoparticle generation in short pulse laser ablation of thin metal films in water.

نویسندگان

  • Cheng-Yu Shih
  • Chengping Wu
  • Maxim V Shugaev
  • Leonid V Zhigilei
چکیده

Laser ablation in liquids is actively used for generation of clean colloidal nanoparticles with unique shapes and functionalities. The fundamental mechanisms of the laser ablation in liquids and the key processes that control the nanoparticle structure, composition, and size distribution, however, are not yet fully understood. In this paper, we report the results of first atomistic simulations of laser ablation of metal targets in liquid environment. A model combining a coarse-grained representation of the liquid environment (parameterized for water), a fully atomistic description of laser interactions with metal targets, and acoustic impedance matching boundary conditions is developed and applied for simulation of laser ablation of a thin silver film deposited on a silica substrate. The simulations, performed at two laser fluences in the regime of phase explosion, predict a rapid deceleration of the ejected ablation plume and the formation of a dense superheated molten layer at the water-plume interface. The water in contact with the hot metal layer is brought to the supercritical state and transforms into an expanding low density metal-water mixing region that serves as a precursor for the formation of a cavitation bubble. Two distinct mechanisms of the nanoparticle formation are predicted in the simulations: (1) the nucleation and growth of small (mostly ⩽10nm) nanoparticles in the metal-water mixing region and (2) the formation of larger (tens of nm) nanoparticles through the breakup of the superheated molten metal layer triggered by the emergence of complex morphological features attributed to the Rayleigh-Taylor instability of the interface between at the superheated metal layer and the supercritical water. The first mechanism is facilitated by the rapid cooling of the growing nanoparticles in the supercritical water environment, resulting in solidification of the nanoparticles located in the upper part of the mixing region on the timescale of nanoseconds. The computational prediction of the two mechanisms of nanoparticle formation yielding nanoparticles with different characteristic sizes is consistent with experimental observations of two distinct nanoparticle populations appearing at different stages of the ablation process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generation of Subsurface Voids, Incubation Effect, and Formation of Nanoparticles in Short Pulse Laser Interactions with Bulk Metal Targets in Liquid: Molecular Dynamics Study

The ability of short pulse laser ablation in liquids to produce clean colloidal nanoparticles and unusual surface morphology has been employed in a broad range of practical applications. In this paper, we report the results of large-scale molecular dynamics simulations aimed at revealing the key processes that control the surface morphology and nanoparticle size distributions by pulsed laser ab...

متن کامل

Two mechanisms of nanoparticle generation in picosecond laser ablation in liquids: the origin of the bimodal size distribution.

The synthesis of chemically clean and environmentally friendly nanoparticles through pulsed laser ablation in liquids has shown a number of advantages over conventional chemical synthesis methods and has evolved into a thriving research field attracting laboratory and industrial applications. The fundamental understanding of processes leading to the nanoparticle generation, however, still remai...

متن کامل

Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films

The kinetics and microscopic mechanisms of laser melting and disintegration of thin Ni and Au films irradiated by a short, from 200 fs to 150 ps, laser pulse are investigated in a coupled atomistic-continuum computational model. The model provides a detailed atomic-level description of fast nonequilibrium processes of laser melting and film disintegration and, at the same time, ensures an adequ...

متن کامل

Preparation and Characterization of ZnO Nanoparticles by Laser Ablation in NaOH Aqueous Solution

In the recent years, laser ablation in liquid has become an increasingly important technique for the fabrication of NPs. this paper reports our recent studies on the generation of ZnO NPs by ablation of metal targets in aqueous environments using Q-switch Nd-YAG laser (λ=532nm) immersed in NaOH (0.1M). The Surface topography studied by atomic force microscopy revealed wider size distributio...

متن کامل

Numerical modeling of short pulse laser interaction with Au nanoparticle surrounded by water

Short pulse laser interaction with a metal nanoparticle surrounded by water is investigated with a hydrodynamic computational model that includes a realistic equation of state for water and accounts for thermoelastic behavior and the kinetics of electron–phonon equilibration in the nanoparticle. Computational results suggest that, at laser fluences close to the threshold for vapor bubble format...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of colloid and interface science

دوره 489  شماره 

صفحات  -

تاریخ انتشار 2017